
Multilayer Perceptron Neural Networks for Handwritten Character Recognition
Logan Greer, Eric Guidarelli, Joseph Mandara, Craig Szot, Ric Rey Vergara, and Ryan Wright
Rowan University, Glassboro, NJ

Lockheed Martin Junior/Senior Engineering Clinic
Abstract—The primary objective of this project was to gain a basic understanding of machine learning by studying neural networks and applying MATLAB’s Neural Network Toolbox to perform character recognition on a widely studied dataset of hand-written characters. A secondary objective of this project was to expose college engineering students to Agile Methodology, an alternative project management system that is becoming increasingly prevalent in industry. After evaluating the neural network results of various features and network configurations with ten-fold cross-validation, an optimal network that combines distance profiles, projection histograms, and pixel features was selected. This network achieved a classification success
of 81.94% ± 2.26% on all 62 characters, which is comparable to the reported successes of a convolution neural network
(88.12% ± 0.09%) and human classification (81.8% with
 0.1% standard error). Future work includes investigating the merits of applying a deep belief network to the same character recognition problem.
Index Terms—Feature Extraction; Handwritten Character Recognition; MATLAB; MLP; Neural Network; Optical Character Recognition; Principal Component Analysis
I. Introduction

A. Project Objectives

The objective of this project was to gain a basic understanding of machine learning in order to apply neural networks to a character recognition problem. To create a functional neural network, the project required students to gain a working knowledge of MATLAB’s Neural Network Toolbox. In addition, the project operated under an Agile Methodology in order to introduce engineering students to a project management system gaining increasing traction in industry.
B. Neural Networks

Artificial Neural Networks (ANNs) are problem solving models inspired by biological neural networks (i.e. a brain). This project utilized a feedforward ANN model known as a multilayer perceptron (MLP). An MLP consists of many interconnected nodes, akin to neurons, that receive and pass forward information, potentially through multiple layers. A node can receive multiple data inputs, and from them produce a single output. The node is trained over time to associate certain inputs with a specific output. Each node contains an activation function that determines whether or not to “fire” and pass on its output. Multiple nodes can be created to receive different inputs and make different “decisions.” Creating additional layers of nodes allows outputs from the previous layer to be combined, which allows the network to view the data in more abstract ways. However, increasing nodes and layers comes at the cost of increased computation time [1].
II. Data Processing
A. NIST Special Database 19

The character dataset used for this project was first released as the National Institute of Standards and Technology’s Special Database 19 (NIST SD19). This dataset contains 815,000 hand-printed characters acquired from 3,600 different writers for use in character recognition applications. The dataset includes digits, uppercase, and lowercase characters that all possess manually-checked classifications.

[image: image17.png]

Figure 1: NIST SD19 Sample Form
B. Image Processing

The SD19 was purchased from NIST, and a CD containing the dataset was delivered along with two extraction programs meant to parse through the characters. A Linux system was required to execute the extraction programs, but upon installation of these programs, multiple errors occurred. In the interest of time, a user uploaded dataset containing all of the unpacked images was downloaded [2]. This dataset was extracted from HSF_x_single_images.rar which included all 815,000 characters. Then, using the Python Imaging Library, each image was thresholded and converted to a 128x128 binary image. These converted images and their target classes were saved to a text (.txt) file and uploaded as part of the user’s tutorial.
After downloading the data, a MATLAB script was written to separate the single text file into 163 smaller files, each containing 5000 character images and their target classes. This was done so that portions of the dataset could be processed simultaneously. Each character was formatted as a string featuring the target class, followed by a space, and then 16,384 bits representing the binary pixel values of the image reshaped into a single line. From this format, the text was parsed into two arrays: one for the character images, and the other for their respective target classes. The original 16,384-bit-long strings were converted into a double format that the neural network could process. The original target class for each character was given as a digit or letter, but since the neural network requires numerical data, a 62-bit character key was created. In this key, the digits “0”-“9” corresponded to indices 1-10, the lowercase characters “a”-“z” corresponded to indices 11-36, and the uppercase characters “A”-“Z” corresponded to indices 37-62. Each target class was then converted into this format, by placing a 1 in the matching character key index and 0 in the remaining 61 indices. The images and target classes were then converted to MAT-files (.mat), after which the manageable size and format made it possible to further process the data and develop features.
Initially, the format of the image file was not known. In order to standardize the data that was received, a MATLAB function was written to ensure that all image files were all in a JPEG file (.jpeg) format which held a grayscale image. This function was later disregarded when the image files were found to be all standardized as 16,384-bit-long strings. After converting the strings to double format and reshaping them into 128x128 binary matrices, all excess white space surrounding each character was cropped. Each character matrix was then resized to a 16x16 binary matrix to reduce file size without removing useful information. This crop was performed by sending the matrix through a user-created function called Crop(). This function operated by first inverting the image. Since the image was in binary format - with the black pixels of the letter represented by 1 and the white space represented by 0 - the invert operator switched these binary representations. The binary images were inverted because it is easier for MATLAB to detect a portion of a matrix that is all 0s as opposed to all 1s. MATLAB detects this portion by using the bwlabel() function. When given a matrix, this function returns a labelled matrix of identical size, with values in the locations of the connected portions which correspond to the number of connected portions there are. The first connected portion of a binary matrix gets a label of 1, the second a label of 2, and so on. Using the max() and find() functions built into MATLAB, the locations of the portions can be found. After finding the length and width of the portion, a matrix populated with all 0s was created to hold the connected portion found in the original 128x128 image to its edge, without having any white space around it. A for loop then populated the matrix of 0s with the pixels of the cropped character image. Once pixels are populated into the matrix, the result is a rectangular matrix which houses a character that extends to the edge of the matrix on all sides. The matrix is then inverted again to return it to its original state. The new image is now resized to a 16x16 matrix using the imresize() function in MATLAB, to ensure that all images are a standard size for further data processing. The size of 16x16 was selected in order to minimize the total data and cut down on computation time, but also ensure that enough data would remain to derive reliable information from the cropped image.

[image: image2]
[image: image3]
Figure 2: Original Image (left), Cropped/Resized Image (right)

C. Feature Extraction
The neural network required input that was mathematically and computationally convenient to process. Numerical profiling features that distinguish characters from each other needed to be researched and investigated. Feature extraction is one of the most important factors in obtaining a low error performance in classification. Features allow the image to be represented in a one-dimensional signal rather than a two-dimensional signal. It is important to have features that give sufficient information about the image. A good feature can differentiate between different classes accurately. It is also important to implement these features through code with accurate results such that the expected feature values are the same for each target letter. Due to the presence of noise, this ideal case will not happen. Increasing the accuracy of the feature extraction functions is a crucial part of increasing the performance of the neural network. A number of feature types were researched and chosen to be used in the neural network. Features can be classified into two categories: local features and global features [3]. Local features are obtained from specific areas in the image and are usually geometric. Examples include the number of branches, the number of joints, and concavity. Global features obtain information from the image as a whole. This includes projection profiles and number of holes. All of the features chosen for the network were global features. Note that testing could be done not only on single feature types but also using a combination of features in order to give the network different classification information simultaneously.
1) Crossings

The crossings feature counts the number of times a part of the letter is detected in a specific, linear direction of the image. Lines are drawn either horizontally or vertically through the character, and each transition from background to foreground is counted. For example, a single vertical line drawn through the center of an “E” would produce a crossings count of three. A letter “D” has a count of two, and an “L” has a count of one. Note that multiple crossings can be done through the letter to obtain a larger dimension feature vector [4].

[image: image4]
Figure 3: Crossings Feature of a Character

To extract the crossings feature set from each character, the MATLAB function diff() was used to search through the middle column or middle row and obtain the locations where consecutive image pixels changed value. If the pixel value did not change, the value in the new array would be set to 0 for that location. If the value changed from 0 to 1 or from 1 to 0, the value in the new array would be set to 1 or -1 respectively. Using the new array, all -1 values were set to 1, while all other values were changed to 0. This represents all the locations where the image changed from black to white. The sum of the arrays for horizontal and vertical crossings were obtained. These values represented the total number of crossings for the middle of the image horizontally and vertically. If only two lines were drawn, one vertical and one horizontal, then the function would return two features.

2) Euler Number

The Euler number is a feature that takes into account the number of entities and holes in the image. It is calculated by subtracting the number of holes in a region from the number of objects in the region. For example, the Euler number for the letter “P” is 0 because it contains one entity and one hole. For the dataset, this would divide characters into three groups (L=1, D=0, B=-1). Note that the Euler number extracts only one feature from each image [5].

[image: image5]
Figure 4: Euler Number Visualization

The MATLAB function bweuler() was used to obtain the feature. The function takes in an image matrix as an input and outputs the appropriate Euler number. The connectivity can also be specified which determines the connectivity of pixels based off of the four pixels at its four sides or all eight pixels around it. The default connectivity of 8 was used. Using the function by itself without proper preprocessing can output incorrect Euler number values. This is due to the presence of random white pixels in the letter and also black pixels in the background. The bweuler() function takes these small pixels into account when counting holes and entities. To fix this issue, filling had to be done to remove stray pixels. The MATLAB function bwareaopen() was used to remove connected pixels that were less than four pixels large. This function was run on the original image and a negated image to remove unwanted pixels and unwanted white space. The accuracy of the function was tested by comparing the feature function output with every sample’s expected Euler number. The function had an overall accuracy of 82% for determining the Euler number.
3) Distance Profile

To reduce dimensionality, the distance profile counts the number of pixels from the bounding box of a character image to outer edge of character. This can be done on all rows and columns starting from the four edges of the image to get an idea of the external shapes of each letter. The distance profile feature can differentiate between a letter “q” and a letter “p” due the differences in the distances of their tail from the left and right bounding boxes [6].

[image: image6]
Figure 5: Distance Profile of a Character

For each column, the feature extraction code counted the number of pixels from the top bounding box down to the first black pixel it reached. The image was then rotated and the process was repeated. This was done for all four sides to obtain a total of 64 features in the feature vector.

4) Projection Histogram

Projection histograms are generated by counting the number of black pixels in each row and/or column of a character image. A single feature is the number of black pixels within a column or row. When completed for all rows and columns of a character, the feature set gives a projection of the black pixels in the character. For example, the projection histogram feature can identify the difference between “m” and “n” because it will detect a large number of pixels within the middle column of the “m” [6].

[image: image7]
Figure 6: Projection Histogram of a Character

The code implementation of this feature scanned a column of the image and counted the number of black pixels. This was done on all columns of the character. Then the image was turned on its side and the number of black pixels within each column was counted as well. As a result, 32 features were extracted to make the feature vector.

5) Pixels

The pixel features profile takes a character image and uses the binary value of each pixel as a unique feature (0 for a black pixel and 1 for a white pixel). If the character images are all processed to be the same size, different versions of the same letter may still blacken similar pixels.

[image: image8]
[image: image9]
Figure 7: Original Image (left), Matrix Representation (right)

D. Principal Component Analysis

To reduce computation time and increase efficiency, principal component analysis (PCA) was applied to feature sets. PCA reduces the number of variables in a given data set into a smaller set of principal components, based on the extent to which the variables affect the total variance in the output. This means PCA will keep the components that contribute the most to the total variance of the output and remove the components that do not contribute much to the variance, thereby eliminating redundancy and/or insignificance among variables. PCA accomplishes this by calculating the eigenvectors and eigenvalues of a given data set and orthogonally projecting the eigenvalues onto each eigenvector. The eigenvalues, or principal components, represent the amount of variance that a variable accounts for, so the projected set that has the largest total variance will be the set that has the greatest difference between the smallest and largest eigenvalues. Based on these results, components that do not significantly affect the total variance of the set can be located and eliminated. The resulting set of reduced principal components can then be used for further data analysis [7].

PCA was performed in MATLAB by using the processpca() function and specifying the cutoff fraction of contribution to the total variance. The function returned a new matrix, with all features removed that contributed less than the cutoff fraction to the variance. The 256 features in each character’s pixel matrix - while greatly reduced from the original 16,384 features - still formed a large feature set to work with. After testing different cutoff fractions for the pixel features - until too many features were removed and performance suffered - a cutoff fraction of 0.075% was selected. This fraction kept only 67 out of the original 256 pixel features, which reduced computation time and significantly increased classification success. PCA was also applied to the distance profile feature set; however, multiple network tests with PCA reduced sets did not show significant improvements when compared to the entire distance profile feature set. This is logical because the distance profile feature set does not have a large number of features and because the only areas that do not show much variance are the corners of the character image. It was concluded that the same case will likely occur with the projection histogram feature set, so PCA was not implemented for either of these feature sets moving forward.
III. Network Optimization
A. MATLAB’s Neural Network Toolbox

The initial neural network was created using MATLAB’s neural network pattern recognition tool (nprtool). This graphical user interface (GUI) allows the user to specify the input matrix of features, the target matrix of classes, and the number of hidden nodes. It trains and tests a network, and then reports a classification error percentage. The GUI also provides the ability to generate a script for the user. This script allows one to exercise more control over the network’s settings, configurations, and operation. Moving forward, all networks would be operated using modified versions of this script. The network’s transfer function was changed from log-sigmoid to tan-sigmoid (a transfer function calculates a layer's output from its net input). Log-sigmoid returns values between 0 and 1, but this application required tan-sigmoid’s return values which vary between -1 and 1.
B. Determining Optimal Network Configurations

Once input matrices were constructed, iterative design approach was employed to determine the optimal network configuration for a given feature profile. It should be noted that the Euler number feature was not implemented in network testing because the single feature it returns does not provide enough specific information about a given character for classification. Each network was also run with ten-fold cross-validation to gain a more accurate estimate of classification performance. The data was randomly partitioned into ten segments of equal size. The network configuration was then trained on nine segments (90% of the data) and tested on the remaining segment (10% of the data). This was repeated nine additional times, so that each run trained on a different 90% of the data and tested on a different 10%. For each of these ten runs, the average classification error was manually calculated from the network’s outputs. The outputs for a single character were decimal values between zero and one for each of the 62 possibilities, depending on the network’s confidence in its answer (e.g. the network might be 80% confident that the character was “R,” but it might also be 15% confident is was “P” and 5% confident it was “K,” so its outputs would return 0.8, 0.15, and 0.05 in in the “R,” “P,” and “K,” character indices, respectively). To normalize the outputs and calculate the classification error, the max() function was used to first determine the maximum confidence percentage for each output, as well as the corresponding character index. The output value for that character index was then set equal to one, and the output values for the remaining 61 characters were set equal to zero. For each tested character, the gsubtract() function then subtracted the normalized output values from the target values. This returned a column of zeros if the targets and outputs both had a one in the same index, otherwise it returned a column that had a one in the target character index and a negative one in the output character index. Therefore, a column of zeros would correspond to a correct classification, while a column containing a one and a negative one would correspond to an incorrect classification. The any() function was used to check if any element in the resulting column was a nonzero number, returning 0 if all elements are zeros (correct classification) or 1 if any element is a nonzero number (incorrect classification). This analysis was performed for all of the characters tested by the network. The overall classification error for a given run was then calculated by summing the values of all elements in the vector returned by the any() function, and dividing by the total number of elements.

Then, the average and standard deviation were calculated for the entire cross-validated set. The first network for each profiling feature consisted of a single hidden layer with an arbitrary number of nodes. In each subsequent network configuration tested, the number of nodes in the first layer was increased or decreased incrementally until performance peaked and plateaued. Following this, configurations with two hidden layers were tested in the same manner. Once the network configuration with the lowest average classification error was found, this configuration was deemed as optimal for the given profile feature. Please refer to Appendix A for tabulated configuration results.
IV. Results
After creating neural networks utilizing each of the different profiling feature sets, the highest average classification success of each network was compared to the rest. In an attempt to achieve even better classification success, several of the profiling features were used in conjunction. The projection histogram, distance profile, and pixel feature sets were concatenated into a single input matrix for use in the neural network. The crossings feature set was excluded, due to the small number of features it would have contributed to the input matrix, relative to those contributed by the others. The table below reports the optimal network configuration
(Layer 1 Nodes, Layer 2 Nodes) and corresponding average classification success for each feature profiling set, as well as for the merged feature set. Standard deviations are also provided.
Table 1: Feature Set Maximum Classification Success
	Feature
	Network Configuration
	Classification Success

	Crossings
	[150, 110]
	36.59% ± 1.17%

	Distance Profile
	[100]
	48.17% ± 0.74%

	Projection Histogram
	[100, 100]
	71.46% ± 1.47%

	Pixels
	[70, 70]
	71.59% ± 14.49%

	Merged
	[90, 90]
	81.94% ± 2.26%

The neural network that trained on the merged feature set produced the best classification results. The success achieved by the merged network (81.94% ± 2.26%) is comparable to the success of a convolution neural network committee
(88.12% ± 0.09%) created by researchers at the Swiss Artificial Intelligence Laboratory [8]. The results are also comparable to the success of actual human classification (81.8% with
0.1% standard error). This human classification success figure was produced from Amazon’s Mechanical Turk service, where actual humans were paid to perform classification assignments [9]. Both of these external studies were conducted using the full NIST 19 Database. It is worth noting that most of the merged network’s incorrect classifications resulted from very similar characters that would require contextual information to correctly classify (e.g. {0,O,o}, {1,l,I,i}, {C,c}). After characters have been cropped and resized, it is nearly impossible for some uppercase characters to be distinguished from their lowercase counterparts.
V. Conclusions
The optimal merged network was able to classify the character dataset with reasonable success. The network proved to be as accurate as human classifiers, and performed its task much faster than a human is capable of. A working knowledge of neural networks and their application through the use of MATLAB’s Neural Network Toolbox was gained by all involved with the project. The team also received exposure to the Agile Methodology and acquired proficiency with its application to engineering problems.
VI. Future Work

Future work in this character recognition study includes investigating the potential merits of using a deep belief network with the same character database. The deep belief network will be created using Python and its Theano Library.

Acknowledgement

The authors would like to thank Lockheed Martin for supporting this project and Rowan University for offering it as a junior/senior engineering clinic project.

References

[1] A. Thompson-Tomlinson, “Artificial Neural Networks,” Rowan University, Glassboro, NJ, 2015.
[2] David (2013, April 8). “Exploring SD19 Glyph Recognition With Random Forests”. Ascii Rain [Online].
[3] G. S. Lehal and C. Singh, “Feature Extraction and Classification for OCR of Gurmukhi Script,” Dept. C.S. & Eng. Punjabi Univ., Patiala, India, Tech. Rep., 1999.

[4] K. A. Kluever, “Introduction to Artificial Intelligence OCR using Artificial Neural Networks,” Dept. C.S. Rochester Inst. of Tech., Rochester, NY, Tech. Rep., Feb. 2008.

[5] B. V. Dhandra et al., “A Single Euler Number Feature for Multi-size Kannada Numeral Recognition,” P.G. Dept. Studies and Research in C.S. Gulbarga Univ., Gulbarga, India, Tech. Rep., 2009.

[6] P. Singh and S. Budhiraja, “Feature Extraction and Classification Techniques in O.C.R. Systems for Handwritten Gurmukhi Script–A Survey,” International Journal of Eng Research and Applications, vol. 1, no. 4, pp. 1736-1739, 2011.

[7] M. Clark, “Principal Component Analysis,” University of North Texas, Denton, TX, 2009.

[8] D.C. Ciresan et al., “Convolutional Neural Network Committees for Handwritten Character Classification,” IDSIA, Manno-Lugano, Switzerland, 2011.
[9] F. Bastien et al., “Deep Self-Taught Learning for Handwritten Character Recognition,” Dept. IRO,

Montreal, Canada, 2010.

Appendix A: Feature Set Test Results
Table 2: Classification Success of the Crossings Feature Set Using 8 Horizontal and Vertical Lines with Ten-Fold Cross-Validation

	Data Tested
	Configuration
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	1:100,000
	[100, 100]
	36.26%
	34.42%
	37.03%
	37.27%
	33.24%
	35.48%
	36.43%
	36.52%
	33.39%
	35.20%
	35.52%
	1.44%

	1:50,000
	[125, 100]
	36.72%
	37.32%
	37.20%
	36.56%
	35.46%
	36.02%
	33.26%
	36.60%
	38.02%
	35.20%
	36.24%
	1.35%

	1:50,000
	[140, 100]
	34.42%
	35.52%
	37.54%
	37.08%
	36.62%
	36.38%
	36.32%
	38.60%
	37.16%
	35.84%
	36.55%
	1.16%

	1:50,000
	[150, 110]
	36.98%
	36.10%
	38.20%
	33.58%
	37.10%
	37.22%
	36.48%
	36.08%
	37.44%
	36.76%
	36.59%
	1.23%

	1:50,000
	[150, 120]
	36.70%
	36.62%
	36.42%
	36.28%
	35.98%
	36.20%
	35.70%
	37.80%
	35.80%
	35.70%
	36.32%
	0.63%

	1:50,000
	[150, 90]
	36.90%
	37.22%
	37.86%
	36.52%
	34.48%
	37.60%
	36.66%
	37.06%
	33.66%
	35.62%
	36.36%
	1.37%

	1:50,000
	[100]
	26.00%
	23.76%
	24.42%
	26.02%
	23.82%
	26.10%
	25.66%
	26.90%
	23.22%
	24.50%
	25.04%
	1.25%

Table 3: Classification Success of the Distance Profile Feature Set with Ten-Fold Cross-Validation

	Data Tested
	Configuration.
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	1:100,000
	[10]
	23.52%
	29.08%
	32.99%
	23.30%
	28.92%
	26.25%
	29.79%
	18.61%
	30.04%
	25.16%
	26.77%
	4.22%

	1:100,000
	[20]
	37.80%
	46.00%
	25.00%
	25.30%
	37.50%
	24.80%
	20.90%
	28.60%
	37.60%
	37.10%
	32.06%
	8.15%

	1:100,000
	[30]
	39.60%
	18.30%
	36.90%
	33.20%
	35.00%
	30.20%
	32.20%
	39.30%
	31.00%
	30.20%
	32.59%
	6.12%

	1:100,000
	[40]
	50.87%
	49.63%
	43.41%
	47.08%
	48.76%
	45.83%
	46.04%
	45.75%
	43.00%
	44.29%
	46.47%
	2.63%

	1:100,000
	[50]
	64.86%
	65.38%
	57.67%
	61.85%
	66.17%
	63.77%
	62.06%
	64.73%
	48.42%
	61.72%
	61.66%
	5.27%

	1:100,000
	[100]
	48.24%
	64.12%
	64.66%
	63.97%
	65.54%
	55.98%
	64.64%
	63.12%
	65.31%
	61.78%
	61.74%
	5.50%

	1:100,000
	[10, 10]
	24.02%
	27.23%
	28.14%
	25.44%
	29.55%
	16.46%
	32.49%
	24.31%
	25.74%
	28.91%
	26.23%
	4.31%

	1:100,000
	[10, 20]
	14.03%
	41.65%
	38.95%
	46.63%
	50.70%
	47.67%
	40.53%
	23.82%
	51.10%
	43.82%
	39.89%
	12.00%

	1:100,000
	[10, 30]
	23.41%
	21.96%
	33.77%
	23.75%
	16.60%
	22.38%
	35.40%
	27.71%
	22.76%
	26.88%
	25.46%
	5.67%

	1:100,000
	[10, 40]
	19.56%
	21.38%
	29.49%
	31.67%
	25.80%
	22.04%
	34.25%
	34.53%
	19.10%
	23.28%
	26.11%
	5.95%

	1:100,000
	[10, 50]
	21.20%
	23.06%
	10.75%
	17.58%
	5.90%
	19.72%
	20.97%
	24.38%
	23.68%
	31.14%
	19.84%
	7.14%

	1:100,000
	[10, 100]
	22.63%
	22.65%
	15.59%
	25.58%
	23.03%
	15.20%
	14.46%
	16.79%
	23.81%
	22.66%
	20.24%
	4.20%

	1:100,000
	[50, 50]
	58.35%
	53.08%
	58.56%
	57.73%
	58.37%
	54.81%
	57.77%
	55.99%
	63.35%
	49.27%
	56.73%
	3.77%

	1:100,000
	[50, 50]
	57.35%
	59.94%
	57.11%
	47.40%
	56.21%
	57.18%
	52.46%
	56.33%
	59.31%
	57.13%
	56.04%
	3.63%

	1:100,000
	[75, 75]
	55.31%
	59.67%
	62.31%
	61.37%
	58.86%
	64.39%
	60.64%
	62.48%
	63.86%
	65.36%
	61.43%
	2.98%

	1:100,000
	[75, 75]
	60.18%
	63.99%
	63.98%
	56.18%
	61.78%
	61.76%
	57.02%
	62.35%
	60.38%
	61.77%
	60.94%
	2.61%

	1:100,000
	[100, 100]
	70.60%
	69.51%
	70.55%
	69.72%
	72.88%
	72.97%
	71.79%
	72.82%
	70.41%
	73.36%
	71.46%
	1.47%

	1:100,000
	[125, 125]
	72.86%
	70.63%
	71.86%
	71.93%
	72.12%
	72.31%
	73.06%
	72.07%
	71.14%
	71.59%
	71.96%
	0.73%

Table 4: Classification Success of the Distance Profile Feature Set After PCA with Ten-Fold Cross-Validation
	Features Kept
	Data Tested
	Configuration
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	64
	1:100,000
	[100, 100]
	61.32%
	60.94%
	61.77%
	61.91%
	60.40%
	57.77%
	60.93%
	59.10%
	62.11%
	60.69%
	60.69%
	1.35%

	53
	1:100,000
	[100, 100]
	60.94%
	63.32%
	59.94%
	60.28%
	63.77%
	61.34%
	59.48%
	59.48%
	63.32%
	63.16%
	61.50%
	1.73%

	42
	1:100,000
	[100, 100]
	57.84%
	59.03%
	62.70%
	59.14%
	56.03%
	62.31%
	62.91%
	62.29%
	62.74%
	60.46%
	60.55%
	2.43%

	35
	1:100,000
	[100, 100]
	54.43%
	61.67%
	64.95%
	61.60%
	60.25%
	59.16%
	64.08%
	63.36%
	63.22%
	62.15%
	61.49%
	3.03%

	16
	1:100,000
	[100, 100]
	61.55%
	61.49%
	60.71%
	60.88%
	59.86%
	62.20%
	59.99%
	61.53%
	62.51%
	63.82%
	61.45%
	1.20%

Table 5: Classification Success of the Histogram Feature Set with Ten-Fold Cross-Validation

	Data Tested
	Configuration
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	1:100,000
	[10]
	31.00%
	32.00%
	29.00%
	28.00%
	35.00%
	35.00%
	31.00%
	33.00%
	25.00%
	32.00%
	31.10%
	3.11%

	1:100,000
	[20]
	41.00%
	37.00%
	41.00%
	40.00%
	40.00%
	40.00%
	40.00%
	39.00%
	40.00%
	41.00%
	39.90%
	1.20%

	1:100,000
	[30]
	43.00%
	41.00%
	41.00%
	44.00%
	43.00%
	44.00%
	45.00%
	45.00%
	41.00%
	46.00%
	43.30%
	1.83%

	1:100,000
	[40]
	45.00%
	45.00%
	46.00%
	45.00%
	45.00%
	46.00%
	44.00%
	45.00%
	45.00%
	44.00%
	45.00%
	0.67%

	1:100,000
	[50]
	46.00%
	46.00%
	47.00%
	47.00%
	47.00%
	44.00%
	45.00%
	46.00%
	44.00%
	47.00%
	45.90%
	1.20%

	1:100,000
	[100]
	47.22%
	48.92%
	49.17%
	48.21%
	47.89%
	47.52%
	48.51%
	49.08%
	47.20%
	47.94%
	48.17%
	0.74%

	1:100,000
	[10, 10]
	33.00%
	36.00%
	21.00%
	32.00%
	34.00%
	31.00%
	31.00%
	28.00%
	31.00%
	30.00%
	30.70%
	4.06%

	1:100,000
	[10, 20]
	32.00%
	35.00%
	35.00%
	28.00%
	28.00%
	37.00%
	33.00%
	38.00%
	34.00%
	34.00%
	33.40%
	3.34%

	1:100,000
	[10, 30]
	40.00%
	27.00%
	36.00%
	36.00%
	37.00%
	32.00%
	29.00%
	32.00%
	33.00%
	36.00%
	33.80%
	3.94%

	1:100,000
	[10, 40]
	41.00%
	40.00%
	32.00%
	38.00%
	29.00%
	32.00%
	34.00%
	33.00%
	36.00%
	30.00%
	34.50%
	4.12%

	1:100,000
	[10, 50]
	30.00%
	31.00%
	38.00%
	35.00%
	25.00%
	29.00%
	27.00%
	37.00%
	33.00%
	32.00%
	31.70%
	4.19%

	1:100,000
	[10, 100]
	31.00%
	29.00%
	28.00%
	27.00%
	24.00%
	26.00%
	30.00%
	28.00%
	26.00%
	27.00%
	27.60%
	2.07%

	1:100,000
	[50, 10]
	31.12%
	35.98%
	39.57%
	34.96%
	34.62%
	36.99%
	31.25%
	33.46%
	33.74%
	35.47%
	34.72%
	2.55%

	1:100,000
	[20, 10]
	27.00%
	33.00%
	37.00%
	34.00%
	34.00%
	27.00%
	36.00%
	32.00%
	37.00%
	32.00%
	32.90%
	3.60%

	1:100,000
	[60, 10]
	37.15%
	36.57%
	35.63%
	33.67%
	30.25%
	33.23%
	37.31%
	35.73%
	34.93%
	37.81%
	35.23%
	2.31%

	1:100,000
	[70, 10]
	37.44%
	34.14%
	38.56%
	35.09%
	30.40%
	37.55%
	33.42%
	33.05%
	32.53%
	35.73%
	34.79%
	2.57%

	1:100,000
	[80, 10]
	37.46%
	32.10%
	11.16%
	30.28%
	33.08%
	38.08%
	28.63%
	33.09%
	13.31%
	38.18%
	29.54%
	9.69%

	1:100,000
	[90, 10]
	36.22%
	35.73%
	35.84%
	35.49%
	34.19%
	37.39%
	39.78%
	38.64%
	35.38%
	36.82%
	36.55%
	1.66%

	1:100,000
	[100, 10]
	32.10%
	31.58%
	40.92%
	32.59%
	32.00%
	30.30%
	37.55%
	37.81%
	27.59%
	35.97%
	33.84%
	4.07%

	1:100,000
	[10, 10, 10]
	25.00%
	21.00%
	27.00%
	29.00%
	29.00%
	29.00%
	27.00%
	30.00%
	33.00%
	28.00%
	27.80%
	3.19%

Table 6: Classification Success of the Pixel Feature Set with Ten-Fold Cross-Validation

	Data Tested
	Configuration
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	1:100,000
	[10]
	19.87%
	30.11%
	13.50%
	23.90%
	19.76%
	19.38%
	19.31%
	26.87%
	25.28%
	16.91%
	21.49%
	4.98%

	100,001:200,000
	[10]
	9.76%
	31.96%
	23.21%
	17.01%
	14.85%
	24.20%
	24.34%
	16.75%
	18.06%
	21.13%
	20.13%
	6.20%

	1:100,000
	[15]
	25.79%
	29.23%
	42.91%
	24.78%
	21.12%
	19.91%
	27.39%
	25.77%
	18.64%
	24.63%
	26.02%
	6.81%

	100,001:200,000
	[15]
	31.90%
	28.71%
	23.54%
	15.61%
	29.74%
	19.47%
	27.55%
	45.88%
	15.06%
	24.43%
	26.19%
	9.02%

	1:100,000
	[20]
	26.69%
	32.45%
	38.86%
	43.19%
	35.69%
	33.74%
	21.71%
	27.57%
	13.73%
	20.87%
	29.45%
	9.04%

	100,001:200,000
	[20]
	33.59%
	29.51%
	34.06%
	21.15%
	31.66%
	35.59%
	24.45%
	36.16%
	39.30%
	22.60%
	30.81%
	6.20%

	1:100,000
	[30]
	33.47%
	51.89%
	30.80%
	34.19%
	43.35%
	25.43%
	2.73%
	1.67%
	58.23%
	45.47%
	32.72%
	18.91%

	1:100,000
	[40]
	36.31%
	55.17%
	53.40%
	55.31%
	55.70%
	27.67%
	40.48%
	51.91%
	19.56%
	48.09%
	44.36%
	12.87%

	1:100,000
	[80]
	49.13%
	45.46%
	54.10%
	54.77%
	34.29%
	45.87%
	49.74%
	52.44%
	47.57%
	49.43%
	48.28%
	5.84%

	1:100,000
	[100]
	48.38%
	42.56%
	45.51%
	52.52%
	46.20%
	47.69%
	46.06%
	52.48%
	44.89%
	49.68%
	47.60%
	3.24%

	1:100,000
	[10, 10]
	28.96%
	27.12%
	21.85%
	26.40%
	27.53%
	24.85%
	32.48%
	23.39%
	23.70%
	25.14%
	26.14%
	3.09%

	100,001:200,000
	[10, 10]
	24.10%
	21.34%
	32.34%
	18.96%
	17.88%
	16.59%
	32.03%
	27.41%
	29.92%
	25.88%
	24.65%
	5.82%

	1:100,000
	[10, 15]
	20.03%
	20.18%
	17.43%
	22.89%
	17.95%
	31.95%
	22.78%
	22.76%
	32.99%
	30.68%
	23.96%
	5.80%

	100,001:200,000
	[10, 15]
	23.89%
	15.30%
	16.37%
	23.95%
	21.83%
	28.97%
	24.40%
	33.06%
	32.73%
	17.90%
	23.84%
	6.31%

	1:100,000
	[10, 20]
	26.79%
	14.96%
	23.05%
	2.62%
	17.85%
	24.65%
	24.34%
	9.69%
	24.95%
	30.11%
	19.90%
	8.57%

	100,001:200,000
	[10, 20]
	28.21%
	29.91%
	25.04%
	26.65%
	28.33%
	30.23%
	30.35%
	27.57%
	28.08%
	35.36%
	28.97%
	2.78%

	1:100,000
	[20, 20]
	15.72%
	43.38%
	25.63%
	48.51%
	33.54%
	51.85%
	43.86%
	44.13%
	35.14%
	51.13%
	39.29%
	11.72%

	1:100,000
	[30, 30]
	50.97%
	55.76%
	56.68%
	39.34%
	54.85%
	54.56%
	55.47%
	57.21%
	56.00%
	52.65%
	53.35%
	5.26%

	1:100,000
	[40, 40]
	55.55%
	58.25%
	58.72%
	56.72%
	56.41%
	46.35%
	59.18%
	59.00%
	57.28%
	59.94%
	56.74%
	3.91%

	1:100,000
	[50, 50]
	55.72%
	61.66%
	60.80%
	61.57%
	59.31%
	60.72%
	54.01%
	62.47%
	60.91%
	62.80%
	60.00%
	2.90%

	1:100,000
	[70, 70]
	62.91%
	63.53%
	62.23%
	62.55%
	63.01%
	65.25%
	63.14%
	63.52%
	64.71%
	63.44%
	63.43%
	0.93%

	1:100,000
	[100, 100]
	48.11%
	66.14%
	65.69%
	64.60%
	66.08%
	65.60%
	67.33%
	67.03%
	65.39%
	60.49%
	63.65%
	5.78%

	1:100,000
	[10, 10, 10]
	26.00%
	30.80%
	17.38%
	22.98%
	22.01%
	27.68%
	30.91%
	18.34%
	17.00%
	31.30%
	24.44%
	5.70%

	100,001:200,000
	[10, 10, 10]
	28.63%
	18.47%
	19.20%
	30.15%
	23.33%
	24.19%
	20.20%
	23.73%
	24.81%
	17.17%
	22.99%
	4.28%

Table 7: Classification Success of the Pixel Feature Set After PCA with Ten-Fold Cross-Validation

	Features Kept
	Data Tested
	Configuration
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	92
	1:100,000
	[10]
	34.86%
	35.63%
	0.80%
	37.16%
	34.22%
	35.74%
	35.79%
	40.02%
	38.35%
	35.84%
	32.84%
	11.39%

	
	1:100,000
	[70, 70]
	74.22%
	37.93%
	73.73%
	74.74%
	73.18%
	73.48%
	73.80%
	74.66%
	50.24%
	74.26%
	68.02%
	12.96%

	67
	1:100,000
	[10]
	100.00%
	63.14%
	50.51%
	32.64%
	50.79%
	58.19%
	61.68%
	56.33%
	60.56%
	56.86%
	59.07%
	16.85%

	
	1:100,000
	[70, 70]
	76.48%
	69.72%
	77.89%
	77.39%
	77.12%
	77.00%
	77.28%
	77.73%
	75.19%
	71.56%
	75.74%
	2.82%

	
	1:815,000
	[70, 70]
	81.67%
	82.12%
	58.24%
	64.19%
	50.81%
	48.59%
	82.00%
	82.69%
	82.88%
	82.75%
	71.59%
	14.49%

	
	1:815,000
	[70, 70]
	80.86%
	81.49%
	57.67%
	57.33%
	47.30%
	43.48%
	81.35%
	81.92%
	82.23%
	82.22%
	69.59%
	16.16%

	54
	1:100,000
	[10]
	12.34%
	28.60%
	61.31%
	53.43%
	0.25%
	14.53%
	59.78%
	50.24%
	60.07%
	57.59%
	39.81%
	23.49%

Table 8: Classification Success of the Merged Feature Set with Ten-Fold Cross-Validation

	Data Tested
	Configuration
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7
	Run 8
	Run 9
	Run 10
	Average
	Std. Dev.

	1:100,000
	[50, 50]
	65.66%
	69.42%
	96.68%
	63.15%
	64.14%
	69.97%
	51.96%
	69.71%
	65.22%
	67.46%
	68.34%
	11.25%

	1:100,000
	[80, 80]
	76.80%
	77.56%
	84.13%
	68.92%
	77.36%
	78.75%
	84.88%
	80.84%
	78.97%
	83.60%
	79.18%
	4.67%

	1:100,000
	[90, 90]
	85.90%
	83.10%
	86.20%
	85.80%
	79.82%
	84.46%
	85.85%
	83.88%
	85.09%
	83.84%
	84.39%
	1.92%

	1:100,000
	[100, 100]
	84.42%
	83.43%
	82.64%
	85.35%
	84.20%
	82.50%
	87.18%
	83.57%
	82.37%
	84.28%
	83.99%
	1.47%

	1:815,000
	[90, 90]
	75.77%
	83.14%
	83.00%
	81.64%
	83.03%
	82.91%
	81.44%
	82.41%
	82.76%
	83.35%
	81.94%
	2.26%

Appendix B: MATLAB Functions and Scripts
%%%
%% OCR Data Processing
% Lockheed Martin - Automatic Pattern Recognition Clinic
%
% The purpose of this function is to process all OCR data in a chosen
% directory by cropping excess data, reshape images to a uniform size,
% generate a binary key to represent each image (target), and to save the processed
% image vectors and their targets into a .mat file.
%
%%%
% Initialize variables
% initialFolder should be like this: C:\Users\guida\Google Drive\School\2015 Fall\Clinic\LM Pattern Recognition Clinic\Data\OCR data
% desitinationFolder should be like this: C:\Users\guida\Google Drive\School\2015 Fall\Clinic\LM Pattern Recognition Clinic\Data\mat files\pixelFeatures
initialFolder = uigetdir('Select the Initial Folder');
destinationFolder = uigetdir('Select the Destination Folder');
% functionsFolder should be like this 'C:\Users\guida\Google Drive\School\2015 Fall\Clinic\LM Pattern Recognition Clinic\Functions';
functionsFolder = uigetdir('Select the Functions Folder');
addpath(functionsFolder);
featureSelectionSuite = 0; %1 is on, 0 is off.
directory = dir([initialFolder '*.txt']);
charKey = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e',...
 'f','g','h','i','j','k','l','m','n','o','p','q','r','s','t',...
 'u','v','w','x','y','z','A','B','C','D','E','F','G','H','I',...
 'J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X',...
 'Y','Z',];
% While loop to step through entire directory. Process each of the below
% steps inside the while loop.
for i = 58:1:83
 % Load a single file of image vectors
 cd(initialFolder);
 fid = fopen(directory(i).name);
 line = fgetl(fid);
 % step through each line, convert 1D vector to 2D type double array and
 % crop image. reshape 2D array to standard dimensions and convert back to
 % 1D vector.
 % Pull each target and convert it to a binary representation. Save these to
 % a targets variable.
 j = 1;
 while ischar(line)
 image = line(3:end);
 targetChar = line(1);
 image = fliplr(rot90(rot90(rot90(reshape(str2double(cellstr(reshape(image,16384,1))),[128,128])))));
 if featureSelectionSuite
 % run feature scripts
 else
 % run cropping script
 image = Crop(image);
 imageVector = reshape(image,1,numel(image));
 target = zeros(1,length(charKey));
 target(targetChar==charKey) = 1;
 end
 images(j,:) = imageVector;
 targets(j,:) = target;
 if mod(j-1,1000) == 0
 display(['status: Working on ',directory(i).name,', completed line: ',num2str(j)])
 end
 j = j+1;
 line = fgetl(fid);
 end
 % Save a workspace of 1D image vectors and targets to a .mat file of the
 % same name as single file to a new folder.
 cd(destinationFolder);
 characterKey = num2cell(charKey);
 save([directory(i).name(1:(end-4)),'.mat'],'images','targets','characterKey');
 % Change directories to previous location, repeat process.
 cd(initialFolder);
end

%%%
%% Crop

% Lockheed Martin - Automatic Pattern Recognition Clinic
%

% This function takes an image input and crops it to just the character within the image

%

%%%
function croppedIm = Crop(x)
%creates matrix of white letter surrounded by black
x = ~x;
%finds white spot and the rows and columns that are contained in it
label = bwlabel(x);
max(max(label));
[row, col] = find(label);
%finds length and width of white spot
len = max(row) - min(row) + 1;
wid = max(col) - min(col) + 1;
%creates matrix of zeroes that is the size of the white spot
target = zeros([len wid]);
sy = min(col)-1;
sx = min(row)-1;
%populates matrix of zeroes with the letter
for i = 1:size(row,1)
 a = row(i,1)-sx;
 b = col(i,1)-sy;
 target(a,b) = x(row(i,1),col(i,1));
end
%converts matrix back to original grayscale
target = ~target;
%resizes image
croppedIm = imresize(target, [16,16],'nearest');
%%%
%% Distance Profile Feature
% Lockheed Martin - Automatic Pattern Recognition Clinic
%

% This function is used to generate a distance profile feature
% The function's input is the character array of NxN 1's and 0's
% The function takes the array and rotates it 0,90,180,and 270 degrees
% For each rotated array it obtains the distance profile
% The function walks through each row of the array until it finds a 0
% Once a zero found the function walks through the next row
% It calculates the sum of the rows before it reaches 0
% The function does this for each rotated array
%
% INPUTS
% Char is the loaded NxN array

%
% OUTPUTS
% DistanceProfile_0 -> 1xN array distance profile - 0 degree rotation
% DistanceProfile_90 -> 1xN array distance profile - 90 degree rotation
% DistanceProfile_180 -> 1xN array distance profile - 180 degree rotation
% DistanceProfile_270 -> 1xN array distance profile - 270 degree rotation
%
%%%
function [DistanceProfile_0,DistanceProfile_90,DistanceProfile_180,...
 DistanceProfile_270] = DistanceProfile(Char)
%% Function Code
% Rotates the character array that is loaded into the function
Char_0 = Char; % 0 degree rotation -> Left side
Char_90 = rot90(Char_0); % 90 degree rotation -> Top side
Char_180 = rot90(Char_90); % 180 degree rotation -> Right side
Char_270 = rot90(Char_180); % 270 degree rotation -> Bottom side
% Initialized zero arrays for distance profile arrays
DistanceProfile_0 = zeros(1,length(Char));
DistanceProfile_90 = zeros(1,length(Char));
DistanceProfile_180 = zeros(1,length(Char));
DistanceProfile_270 = zeros(1,length(Char));
%% Create the Distance Profile arrays
% Walk through each row until a zero is found
% Calculate the sum up to the position of the first 0
% 0 Degrees rotation
for i = 1:length(Char) % Walks through each row
 for j = 1:length(Char) % Walks through each column
 % If a zero is found go to the next row
 if Char_0(i,j) == 0
 break
 end
 % Calculate the sum for each row
 DistanceProfile_0(i) = DistanceProfile_0(i) + 1;
 end
end
% 90 Degrees rotation
for i = 1:length(Char)
 for j = 1:length(Char)
 if Char_90(i,j) == 0
 break
 end
 DistanceProfile_90(i) = DistanceProfile_90(i) + 1;
 end
end
% 180 Degrees rotation
for i = 1:length(Char)
 for j = 1:length(Char)
 if Char_180(i,j) == 0
 break
 end
 DistanceProfile_180(i) = DistanceProfile_180(i) + 1;
 end
end
% 270 Degrees rotation
for i = 1:length(Char)
 for j = 1:length(Char)
 if Char_270(i,j) == 0
 break
 end
 DistanceProfile_270(i) = DistanceProfile_270(i) + 1;
 end
end
end
%%%
%% Histogram Feature
% Lockheed Martin - Automatic Pattern Recognition Clinic
%

% This function is used to generate a hisogram feature.
% The function's input is the character array of NxN 1's and 0's.
% The function takes the array and inverts the values: 1 = 0 and 0 = 1.
% The function that takes the sum of all the columns and makes a new ...
% 1xN array that contains the sum of each column.
% The function also takes the sum of all the rows and makes a new ...
% 1xN array that contains the sum of each row.
%
%%%
%
% INPUTS
% Char is the loaded NxN array
% OUTPUTS
% C is the column sums
% R is the row sums
%
%%%
function [C,R] = histogram(Char)
%% Function code
% Inverts the character
% 1 = 0 and 0 = 1
New_Char = (Char-1)*-1;
% Sums up all the columns
C = sum(New_Char); % 1xN array of sums of each column
% Sums up all the row
R = sum(New_Char,2)'; % 1xN array of sums of each row
end

%%%
%% Crossings Feature
% Lockheed Martin - Automatic Pattern Recognition Clinic

%
%Takes in a 16 by 16 matrix and scans ONLY ONE vertical line in the 8th column
%and ONE horizontal line in the 8th row. The function returns the number of
%times there is a transition from one to zero and zero to one
%
%hline_8: A 16x1 portion of the total matrix in the 8th column
% Contains a positive 1 where a pixel goes from 0 to 1
% Contains a negative 1 where a pixel goes from 1 to 0
%
%hcount: Feature output. Number of transitions(-1s and 1s) in the column
%

%vline_8: A 16x1 portion of the total matrix in the 8th row
% Contains a positive 1 where a pixel goes from 0 to 1
% Contains a negative 1 where a pixel goes from 1 to 0
%

%vcount: Feature output. Number of transitions(-1s and 1s) in the column
%

%%%
function [hcount,vcount] = crossings(matrix)
%horizontal check
hline_8=diff(matrix(8,1:16));
hcount=nnz(hline_8);
%horizontal count is transitions from opposite values
%vertical check
vline_8=diff(matrix(1:16,8));
vcount=nnz(vline_8);
%vertical count is transitions from opposite values

%%%
%% Euler Number Feature

% Lockheed Martin - Automatic Pattern Recognition Clinic
%
%The function pads the image with white pixels on four sides, then removes
%any white pixels connected to less than 4 other white pixels.
%Black pixels connected to less than 4 other black pixels are also removed.
%
%Then, bweuler finds number of entities and subtracts the number of holes from it to
%get the Euler number

%
%%%
function [n]=eulernumber(matrix)
%preprocess
matrix=padarray(matrix,[2,2],1);%creates white(1s) border around image
%remove white holes(1s) inside character if it is connected to less than 4
%1s
matrix=bwareaopen(matrix,4,4);%does not include diagonals
%invert so that euler function recognizes 1s as presence of an entity
matrix=~matrix;
%remove pixels groups if they are connected to less than 4 1s
matrix=bwareaopen(matrix,4,4);
%euler function
n=bweuler(matrix);

%%%
%% Neural Network Script

% Lockheed Martin - Automatic Pattern Recognition Clinic
%
% Solve a Pattern Recognition Problem with a Neural Network Script
% generated by NPRTOOL
%
% This script assumes these variables are defined:
%
% imagesTotal - input data. targetsTotal - target data

%%%
inputs = AllFeatures';
targets = AllTargets';
% Create a Pattern Recognition Network Add multiple layers w/ commas (ex.
% [10,15] is 2 layers w/ 10 nodes in first and 15 nodes in second)
hiddenLayers = [90,90];
% 10-fold cross-validation
k = 10;
testE = [];
l = length(inputs);
cvFolds = crossvalind('Kfold', l, k); %# get indices of 10-fold CV
for i = 1:k
 clear net
 net = feedforwardnet(hiddenLayers);
% Choose Input and Output Pre/Post-Processing Functions For a list of all
% processing functions type: help nnprocess
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
net.layers{end}.transferFcn = 'tansig';
% Setup Division of Data for Training, Validation, Testing For a list of
% all data division functions type: help nndivide
 testIdx = (cvFolds == i); %# get indices of test instances
 trainIdx = ~testIdx; %# get indices training instances
 trInd=find(trainIdx);
 tstInd=find(testIdx);
% For help on training function 'trainscg' type: help trainscg For a list
% of all training functions type: help nntrain
 net.trainFcn = 'trainscg'; % Scaled conjugate gradient
 net.divideFcn = 'divideind'; % Divide data
 net.divideParam.trainInd = trInd;
 net.divideParam.testInd = tstInd;
 net.trainParam.epochs=750;
% Choose a Performance Function For a list of all performance functions
% type: help nnperformance
 net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions For a list of all plot functions type: help nnplot
 net.plotFcns = {'plotperform'};
% Train the Network
 [net,tr] = train(net,inputs,targets);
% Test the Network and calculate classification error
 outputs = net(inputs(:,tstInd));
 [M,I] = max(outputs);
 outputsRev = zeros(size(outputs));
 outputsRev(sub2ind(size(outputs),I,1:length(I))) = 1;
 diff = gsubtract(targets(:,tstInd),outputsRev);
 classCheck = any(diff);
 testError = sum(classCheck)/length(classCheck);
 testE = [testE testError];
end
avgE = 0;

for x=1:k
 avgE = avgE + testE(x);
end
avgE = avgE/k
save 'CV_OCRData_815000Samples_AllFeatures_9090.mat';
% View the Network
% view(net)

[image: image1.png]HANDWRITING SAMPLE FORM

DATE cry STATE_ 711
§-3-59 | \pawew oy 1 gF¥sz

15 beg collcted or e 12 eating computer 1-cogniton of hand prited mkers

9120456700

lorzsyseres V[or2395¢257) [orozsse67)
Y : o it
4 A G2 [Ceersr) [rer=r]
s s e s ®
/5% [(Gorz] [(B22s57 | [82)
a1 o v = s
ver] [Foszz] [oss272] &7 [~
s e B 20 e
6173%) (2296578 | |z 1582 lszeel
e o s an pry
[ros33+ | [#] [ez5] [222¢] [24022]
erxlskodibisirumetajenhocy
QY xdaffI St/ rupw F9denhoc |

ZXSBNGECMYWQTKFLUOHPIRVDIA

[(Zxs8LGECHYWRTKFiL0HPI2V 5T A

Peae g he oo st b o o

e e G ke i s rm o e e Usio, bl S, e dor
Tsquy, rove ot e sommn D, o b o Wee, ad oo b Bikigs o L
e e, S o i i CoRETVTION i St S

We, Fhe PecfFe or e Ymreq STetes,/nomer7o
[orma more pacfect Daom, establich Sustee,
msor < domest iC Trangolity, Provde £eof the
commun Tefens<) promore +ne gensval Weliy
and S<eure v Blessimas of hberty to our—
Selves ana cor Dogtev Ty, do ordadn andg
esTablish Hhis, (onSTITLTION For Yre
Onited &¥ates of America .

[image: image10.png]o
e
D hw\MHH\HMM!\M\Mw\HHH\uhHmHw\ﬂ\\\u\xum;\r
n ‘ . o M\Hw\u\l\!‘l\u\l\\m\zM\\\ n \ W
L l\n\uw ”‘“M‘H!“\' | |
L Mm-‘m . ‘;\u\l

o
‘\W\UWH‘“‘\HHHW*H\U ‘H“”\“\”\H“”\\‘“‘WU\M“‘H“\“\““WN‘H‘M
rhu\MN\MMwu\\uwMv\\M\mwM\\uw\m\\M\hm\mMwwmm

[image: image11.png]

[image: image12.png]

[image: image13.png]

[image: image14.png]

[image: image15.png]

[image: image16.png]

